موضوع:
سوال امتحانی تابع رادیکالی
اهداف کلی:
1-محاسبه مقدار عددی در تابع رادیکالی
2- استفاده از اتحاد ها در محاسبات تابع رادیکالی
صورت سوال:
ارائه حل:
روش اول:
برای محاسبه مقدار تابع در این نقطه کافی است ،مقدار داده شده را به جای xدر ضابطه داده شده قرار دهیم .پس از جایگذاری با استفاده از اتحاد نوع اول و ساده کردن مقدار تابع در این نقطه محاسبه می شود.
روش دوم:
عبارت زیر رادیکال را به مربع کامل تبدیل می کنیم ،یعنی ابتدا از 2 زیر رادیکال فاکتور می گیریم و سپس نصف ضریب xرا به توان دو رسانده و این عدد را اضافه و کم می کنیم.به این طریق عبارت زیر رادیکال ساده تر شده و سپس عدد داده شده را به جای xقرار داده و مقدار تابع را به دست می آوریم.
\[ f(x)=\sqrt{-2(x^2-4x+4-4)+7} =\sqrt{-2(x-2)^2+8+7}= \sqrt{-2(x-2)^2+15} \]
یادآوری:
اتحاد نوع اول:مربع مجموع دو جمله ای که به صورت زیر می باشد:
\[ (a+b)^2=a^2+2ab+b^2 \]
مربع تفاضل دو جمله ای به صورت زیر می باشد:
\[ (a-b)^2=a^2-2ab+b^2 \]